Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Database
Language
Document Type
Year range
1.
Sci Rep ; 13(1): 6934, 2023 04 28.
Article in English | MEDLINE | ID: covidwho-2299691

ABSTRACT

Rapid and recurrent breakthroughs of new SARS-CoV-2 strains (variants) have prompted public health authorities worldwide to set up surveillance networks to monitor the circulation of variants of concern. The use of next-generation sequencing technologies has raised the need for quality control assessment as required in clinical laboratories. The present study is the first to propose a validation guide for SARS-CoV-2 typing using three different NGS methods fulfilling ISO15189 standards. These include the assessment of the risk, specificity, accuracy, reproducibility, and repeatability of the methods. Among the three methods used, two are amplicon-based involving reverse transcription polymerase chain reaction (Artic v3 and Midnight v1) on Oxford Nanopore Technologies while the third one is amplicon-based using reverse complement polymerase chain reaction (Nimagen) on Illumina technology. We found that all methods met the quality requirement (e.g., 100% concordant typing results for accuracy, reproducibility, and repeatability) for SARS-CoV-2 typing in clinical setting. Additionally, the typing results emerging from each of the three sequencing methods were compared using three widely known nomenclatures (WHO, Pangolineage, and Nextclade). They were also compared regarding single nucleotide variations. The outcomes showed that Artic v3 and Nimagen should be privileged for outbreak investigation as they provide higher quality results for samples that do not meet inclusion criteria for analysis in a clinical setting. This study is a first step towards validation of laboratory developed NGS tests in the context of the new European regulation for medical devices and in vitro diagnostics.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/diagnosis , COVID-19/epidemiology , High-Throughput Nucleotide Sequencing/methods , Reproducibility of Results , Accreditation
2.
Viruses ; 14(10)2022 10 20.
Article in English | MEDLINE | ID: covidwho-2081913

ABSTRACT

An adequate SARS-CoV-2 genomic surveillance strategy has proven to be essential for countries to obtain a thorough understanding of the variants and lineages being imported and successfully established within their borders. During 2020, genomic surveillance in Belgium was not structurally implemented but performed by individual research laboratories that had to acquire the necessary funds themselves to perform this important task. At the start of 2021, a nationwide genomic surveillance consortium was established in Belgium to markedly increase the country's genomic sequencing efforts (both in terms of intensity and representativeness), to perform quality control among participating laboratories, and to enable coordination and collaboration of research projects and publications. We here discuss the genomic surveillance efforts in Belgium before and after the establishment of its genomic sequencing consortium, provide an overview of the specifics of the consortium, and explore more details regarding the scientific studies that have been published as a result of the increased number of Belgian SARS-CoV-2 genomes that have become available.


Subject(s)
COVID-19 , Pandemics , Humans , Belgium/epidemiology , COVID-19/epidemiology , Genome, Viral , Genomics , SARS-CoV-2/genetics , High-Throughput Nucleotide Sequencing
3.
Viruses ; 14(6)2022 06 14.
Article in English | MEDLINE | ID: covidwho-1911630

ABSTRACT

From early 2020, a high demand for SARS-CoV-2 tests was driven by several testing indications, including asymptomatic cases, resulting in the massive roll-out of PCR assays to combat the pandemic. Considering the dynamic of viral shedding during the course of infection, the demand to report cycle threshold (Ct) values rapidly emerged. As Ct values can be affected by a number of factors, we considered that harmonization of semi-quantitative PCR results across laboratories would avoid potential divergent interpretations, particularly in the absence of clinical or serological information. A proposal to harmonize reporting of test results was drafted by the National Reference Centre (NRC) UZ/KU Leuven, distinguishing four categories of positivity based on RNA copies/mL. Pre-quantified control material was shipped to 124 laboratories with instructions to setup a standard curve to define thresholds per assay. For each assay, the mean Ct value and corresponding standard deviation was calculated per target gene, for the three concentrations (107, 105 and 103 copies/mL) that determine the classification. The results of 17 assays are summarized. This harmonization effort allowed to ensure that all Belgian laboratories would report positive PCR results in the same semi-quantitative manner to clinicians and to the national database which feeds contact tracing interventions.


Subject(s)
COVID-19 , SARS-CoV-2 , Belgium/epidemiology , COVID-19/diagnosis , COVID-19/epidemiology , Humans , Pandemics , Real-Time Polymerase Chain Reaction , SARS-CoV-2/genetics
4.
Viruses ; 14(4)2022 03 22.
Article in English | MEDLINE | ID: covidwho-1753695

ABSTRACT

Rapid antigen detection (RAD) tests are commonly used for the diagnosis of SARS-CoV-2 infections. However, with the continuous emergence of new variants of concern (VOC), presenting various mutations potentially affecting the nucleocapsid protein, the analytical performances of these assays should be frequently reevaluated. One hundred and twenty samples were selected and tested with both RT-qPCR and six commercial RAD tests that are commonly sold in Belgian pharmacies. Of these, direct whole-genome sequencing identified the strains present in 116 samples, of which 70 were Delta and 46 were Omicron (BA.1 and BA.1.1 sub-lineages, respectively). The sensitivity across a wide range of Ct values (13.5 to 35.7; median = 21.3) ranged from 70.0% to 92.9% for Delta strains and from 69.6% to 78.3% for Omicron strains. When taking swabs with a low viral load (Ct > 25, corresponding to <4.9 log10 copies/mL), only the Roche RAD test showed acceptable performances for the Delta strains (80.0%), while poor performances were observed for the other RAD tests (20.0% to 40.0%). All the tested devices had poor performances for the Omicron samples with a low viral load (0.0% to 23.1%). The poor performances observed with low viral loads, particularly for the Omicron strain, is an important limitation of RAD tests, which is not sufficiently highlighted in the instructions for use of these devices.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , Humans , Nucleocapsid Proteins/genetics , Real-Time Polymerase Chain Reaction , SARS-CoV-2/genetics
SELECTION OF CITATIONS
SEARCH DETAIL